Laplace Calculator

Online Laplace Calculator

What is Laplace Calculator?

The Laplace Transform is an integral transform used to solve differential equations. It transforms a function of time, f(t), to a function of complex frequency, F(s). The Laplace Transform is a fundamental tool for bridging the time-domain and the frequency-domain in mathematics, physics, and engineering. A Laplace Calculator is a tool, typically software or an online platform, that automates the process of computing the Laplace Transform or Inverse Laplace Transform of mathematical functions. These calculators are designed to handle a wide range of inputs, including standard mathematical expressions and differential equations, and provide the corresponding results in the s-domain or time-domain.

The mathematical definition of Laplace Transform

The Laplace Transform of a functionf(t)f(t), defined for t0t \ge 0, is given by:F(s)=L{f(t)}=0f(t)estdtF(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t) e^{-st} dtwhere:

  • 𝑡 is the time variable (real and non-negative),
  • 𝑠 is a complex number 𝑠 = 𝜎 + 𝑗𝜔 (with real part 𝜎 and imaginary part 𝜔),
  • este^{-st} is the exponential kernel that weights 𝑓(𝑡) based on 𝑠.

Why use our Laplace Calculator?

  • Fast and accurate calculations
  • Easy to use interface
  • Supports a wide range of functions
  • Free to use

What is Inverse Laplace Transform?

The Inverse Laplace Transform is a mathematical operation that converts a function in the s-domain (frequency domain) back into its original form in the t-domain (time domain). It reverses the process of the Laplace Transform.

Resources and Tools to learn Laplace Transform?

Laplace Transform Table

Time Domain f(t)f(t)Laplace Domain F(s)=L{f(t)}F(s)=\mathcal{L}\{f(t)\}Region of Convergence
111s\frac{1}{s}Re(s)>0Re(s) > 0
tt1s2\frac{1}{s^2}Re(s)>0Re(s) > 0
tnt^nn!sn+1\frac{n!}{s^{n+1}}Re(s)>0Re(s) > 0
eate^{at}1sa\frac{1}{s-a}Re(s)>Re(a)Re(s) > Re(a)
sin(at)\sin(at)as2+a2\frac{a}{s^2 + a^2}Re(s)>0Re(s) > 0
cos(at)\cos(at)ss2+a2\frac{s}{s^2 + a^2}Re(s)>0Re(s) > 0
tsin(at)t\sin(at)2as(s2+a2)2\frac{2as}{(s^2 + a^2)^2}Re(s)>0Re(s) > 0
tcos(at)t\cos(at)s2a2(s2+a2)2\frac{s^2 - a^2}{(s^2 + a^2)^2}Re(s)>0Re(s) > 0
eatsin(bt)e^{at}\sin(bt)b(sa)2+b2\frac{b}{(s-a)^2 + b^2}Re(s)>Re(a)Re(s) > Re(a)
eatcos(bt)e^{at}\cos(bt)sa(sa)2+b2\frac{s-a}{(s-a)^2 + b^2}Re(s)>Re(a)Re(s) > Re(a)

Note: This table shows some of the most commonly used Laplace transform pairs. The Region of Convergence (ROC) indicates where the transform is valid in the complex s-plane.

Inverse Laplace Transform Table

Laplace Domain F(s)F(s)Time Domain f(t)=L1{F(s)}f(t)=\mathcal{L}^{-1}\{F(s)\}Conditions
1s\frac{1}{s}11t>0t > 0
1s2\frac{1}{s^2}ttt>0t > 0
1sn+1\frac{1}{s^{n+1}}tnn!\frac{t^n}{n!}t>0t > 0
1sa\frac{1}{s-a}eate^{at}t>0t > 0
as2+a2\frac{a}{s^2 + a^2}sin(at)\sin(at)t>0t > 0
ss2+a2\frac{s}{s^2 + a^2}cos(at)\cos(at)t>0t > 0
1(sa)2\frac{1}{(s-a)^2}teatte^{at}t>0t > 0
1s2+a2\frac{1}{s^2 + a^2}1asin(at)\frac{1}{a}\sin(at)t>0t > 0
s2(s2+a2)2\frac{s^2}{(s^2 + a^2)^2}12tsin(at)\frac{1}{2}t\sin(at)t>0t > 0
s(s2+a2)2\frac{s}{(s^2 + a^2)^2}t2acos(at)\frac{t}{2a}\cos(at)t>0t > 0

Note: This table shows common inverse Laplace transform pairs. The condition t > 0 is required for all inverse transforms as they are only defined for positive time.